AROMATICITY

AROM TIC COMPOUNDS

Aromaticity
 Benzene - $\mathrm{C}_{6} \mathrm{H}_{6}$

Kekulé and the Structure of Benzene Kekule benzene: two forms are in rapid equilibrium

- All bonds are 140 pm (intermediate between C-C and C=C)
- C-C-C bond angles are 120°
- Structure is planar, hexagonal

A Resonance Picture of Bonding in Benzene

resonance
hybrid

6π-electron delocalized over 6 carbon atoms

The Stability of Benzene
Aromaticity: cyclic conjugated organic compounds such as benzene, exhibit special stability due to resonance delocalization of π-electrons.

Heats of hydrogenation

1,3,5-Hexatriene - conjugated but not cyclic

Resonance energy of benzene is $129-152 \mathrm{KJ} / \mathrm{mol}$

An Orbital Hybridization View of Bonding in Benzene

- Benzene is a planar, hexagonal cyclic hydrocarbon
- The $\mathrm{C}-\mathrm{C}-\mathrm{C}$ bond angles are $120^{\circ}=\mathrm{sp}^{2}$ hybridized
- Each carbon possesses an unhybridized p-orbital, which makes up the conjugated π-system.
- The six π-electrons are delocalized through the π-system

The π Molecular Orbitals of Benzene - the aromatic system of benzene consists of six p-orbitals (atomic orbitals). Benzene must have six molecular orbitals.

Degenerate orbitals: orbitals that have the same energy
Ψ_{1} : zero nodes
Ψ_{2} and Ψ_{3} : one node
Ψ_{4} and Ψ_{5} : two nodes
Ψ_{6} : three node

Bonding

Anti-bonding

Substituted Derivatives of Benzene and Their Nomenclature

Generally, mono-substituted benzenes are named in a similar manner as hydrocarbons with -benzene as the parent name

large number of non-systematic names that can serve as the parent name (Table 11.1)

benzene

toluene

phenol

anisole

aniline

styrene benzaldehyde benzoic acid

Benzenes with two or more substituents:

- Choose numbers to get lowest possible values
- List substituents alphabetically with hyphenated numbers
- Non-systematic names, such as "toluene" can serve as parent

4-Bromo-1,2-dimethylbenzene
(c) Thomson - Brooks Cole

2,6-Dibromophenol ormomeno: Boous cole

m-Chlorobenzoic acid

Disubstituted benzene: relative position of the substitutents

Note: ortho, meta, and para are not used in systematic nomenclature

2-chlorotoluene ortho-chlorotoluene o-chlorotoluene

1,3-dimethylbenzene meta-xylene m-xylene

4-chlorobenzoic acid para-chlorobenzoic acid p-chlorobenzoic acid

When the benzene ring is a substituent of a parent chain, it is referred to as a phenyl group. The benzene ring is regarded as a substituent when the parent chain has greater than six carbons. The benzene ring is the parent when the longest alkyl chain substituent is six carbons or less

2-methyl-7-phenyloctane

(1-methylbutyl)benzene

A phenyl substituent $\left(\mathrm{C}_{6} \mathrm{H}_{5}-\right)$ is often abbreviates as Ph -
$\mathrm{A}_{6} \mathrm{H}_{5}-\mathrm{CH}_{2}$ - substitutent (phenylmethyl-) is often referred to as a benzyl group (Bn -)

Polycyclic Aromatic Hydrocarbons (PAHs)

benzene

naphthalene

anthracene

phenanthrene

coronene

triphenylene
11.9: Physical Properties of Arenes (please read)

Reactions of Arenes: A Preview

1. Reactions involving the ring
A. Reduction
a. Catalytic hydrogenation
b. Birch reduction
B. Electrophilic aromatic substitution
C. Nucleophilic aromatic substitution
2. The ring as a substituent
A. Benzylic halogenation
B. Benzylic oxidation
C. Nucleophilic substitution of benzylic halides

The Birch Reduction

Catalytic Hydrogenation - Aromatic rings are inert to catalytic hydrogenation under conditions that will reduce alkene double bonds. Therefore, an alkene double bond can therefore be selectively reduced in the presence of an aromatic ring

Reduction of an aromatic ring requires forcing reducing conditions (high pressure and/or highly active catalysts)

Birch Reduction - dissolving metal reduction of an aromatic ring Li, Na or K metal in liquid ammonia.

Mechanism is related to the reduction of $\mathrm{C} \equiv \mathrm{C}$ to trans-alkenes
$S_{N} 1$ Reactions of Benzylic Halides

>600 times
more reactive

Reactivity is reflective of the greater stability of the benzylic carbocation intermediate
$\mathrm{S}_{\mathrm{N}} 2$ Reactions of Benzylic Halides -
Benzylic halides undergo $\mathrm{S}_{\mathrm{N}}{ }^{2}$ reactions faster than a alkyl halides (similar to allylic halides)

Addition Reactions of Alkenylbenzenes - alkenyl

 substituents on a benzene ring undergo reactions typical of an alkene. The benzene ring can influence the reactivity.

Cyclooctatetraene:

Heats of hydrogenation - No special stability for cyclooctatetraene

$230 \mathrm{KJ} / \mathrm{mol}$

$205 \mathrm{KJ} / \mathrm{mol}$

$208 \mathrm{KJ} / \mathrm{mol}$

$303 \mathrm{KJ} / \mathrm{mol}$

$410 \mathrm{KJ} / \mathrm{mol}$
reactivity similar to normal $\mathrm{C}=\mathrm{C}$
Exists in a boat-like conformation: little overlap between double bonds

not aromatic

aromatic

not aromatic

Cyclic conjugation is necessary, but not sufficient criteria for aromaticity.

Hückel's Rule:
Aromatic:
Cyclic
Conjugated: "alternating single and double bonds"
Planar: maximum overlap between conjugated π-bonds
Must contain $4 n+2 \pi$-electrons, where n is an integer (Hückel's rule)

Anti-aromatic:
cyclic, conjugated, planar molecules that contain $4 \mathrm{n} \pi$-electrons (where n is an integer).

Destabilized (highly reactive) relative to the corresponding open-chain conjugated system

Frost Circles: relative energies of the molecular orbitals of cyclic, conjugated systems

Inscribe the cyclic, conjugated molecule into a circle so that a vertex is at the bottom. The relative energies of the MO's are where the ring atoms intersect the circle

benzene:

Benzene
6π-electrons

The bonding MO's will be filled for aromatic compounds, such as benzene.

Cyclobutadiene:

41 bonding MO
Cyclobutadiene 4π-electrons

For anti- aromatic compounds, such as cyclobutadiene and cyclooctatetraene, there will be unpaired electrons in bonding, non-bonding or antibonding MO's.

Cyclooctatetraene:

Cyclooctatetraene

8π-electrons

Annulenes - monocyclic, conjugated, planar polyenes that conform to Hückel's rule.
[10]annulene

10π-electrons
$4 n+2=10, n=2$.
[14]annulene

14π-electrons
$4 n+2=14, n=3$

[16]annulene 16π-electrons $4 n=16, n=4$

Aromatic lons

Cyclopropenyl cation

$$
\begin{gathered}
4 n+2=2 \\
n=0 \\
\text { aromatic }
\end{gathered}
$$

cyclopropenyl cation 2π-electrons

Cyclopentadienyl cation

cyclopentadienyl cation
4π-electrons

Cycloheptatrienyl cation

$$
\begin{gathered}
4 n+2=6 \\
n=1
\end{gathered}
$$

aromatic
cycloheptatrienyl cation
6π-electrons

Cyclopropenyl anion

Cyclopentadienyl anion

$4 n+2=6$
$n=1$
aromatic

Heterocyclic Aromatic Compounds (please read)
Heterocycle: any cyclic compound that contains ring atom(s) other than carbon (N, O, S, P). Cyclic compounds that contain only carbon are called carbocycles

pyridine

pyrrole

imidazole

furan

thiophene

thiazole oxazole

Heterocyclic Aromatic Compounds and Hückel's Rule Pyridine: π-electron structure resembles benzene (6π-electrons) The nitrogen lone pair electrons are not part of the aromatic system.

pyridine

Six π electrons

Pyrrole: 6π-electron system similar to that of cyclopentadienyl anion. There are four $s p^{2}$-hybridized carbons with $4 p$ orbitals perpendicular to the ring and 4π-electrons and a lone pair of electrons in an unhybridized p^{2} orbital that is part of the aromatic sextet

Six π electrons

$+\mathrm{H}_{2} \mathrm{O} \xlongequal{\mathrm{p} K_{\mathrm{a}} \sim 5.2}$

$+\mathrm{H}_{3} \mathrm{O}^{+}$

$+\mathrm{H}_{2} \mathrm{O} \xlongequal{\mathrm{p} K_{\mathrm{a}} \sim-4} \xlongequal[\substack{\dot{\mathrm{~N}} \\ \dot{H}}]{\left\langle\mathrm{H}^{\prime}\right.}$
$+\mathrm{H}_{3} \mathrm{O}^{+}$

